Bridging Topic Modeling and Personalized Search
نویسندگان
چکیده
This work presents a study to bridge topic modeling and personalized search. A probabilistic topic model is used to extract topics from user search history. These topics can be seen as a roughly summary of user preferences and further treated as feedback within the KL-Divergence retrieval model to estimate a more accurate query model. The topics more relevant to current query contribute more in updating the query model which helps to distinguish between relevant and irrelevant parts and filter out noise in user search history. We designed task oriented user study and the results show that: (1) The extracted topics can be used to cluster queries according to topics. (2) The proposed approach improves ranking quality consistently for queries matching user past interests and is robust for queries not matching past interests.
منابع مشابه
Personalized Celebrity Video Search Based on Cross-Space Mining
Online videos are becoming popular these days. Personalized search has been recognized as effective solution for user accessing desired information when facing a daunting volume of videos. Personalized query understanding serves as one of the most challenges in personalized search, which indicates that unique query has distributed meanings and produce different semantics for different users. Ta...
متن کاملCriteria for Cluster-Based Personalized Search
We study personalized web ranking algorithms based on the existence of document clusterings. Motivated by the topic sensitive page ranking of Haveliwala [20], we develop and implement an efficient “local-cluster” algorithm by extending the web search algorithm of Achlioptas, Fiat, Karlin and McSherry [10]. We propose some formal criteria for evaluating such personalized ranking algorithms and p...
متن کاملHuman Cancer Modeling: Recapitulating Tumor Heterogeneity Towards Personalized Medicine
Despite diagnostic, preventive and therapeutic advances, growing incidence of cancer and high rate of mortality among patients affected by specific cancer types indicate current clinical measures are not ideally useful in eradicating cancer. Chemoresistance and subsequent disease relapse are believed to be mainly driven by the cell-molecular heterogeneity of human tumors that necessitates perso...
متن کاملAn Effective Personalized Search Engine Architecture for Re-ranking Search Results Using User Behavior
Web search engines provide users with a Large number of results for a submitted query. However, not all return results are relevant to the uses needs. In this paper, we proposed a new web search personalization approach that captures the user's interest and references in the form of concepts by mining search results and they click through. In this paper an effective mixture personalized reranki...
متن کاملA User Modeling System for Personalized Interaction and Tailored Retrieval in Interactive IR
We present a user modeling system for personalized interaction and tailored retrieval that (1) tracks interactions over time, (2) represents multiple information needs, both short and long term, (3) allows for changes in information needs over time, (4) acquires and updates the user model automatically, without explicit assistance from the user, and (5) accounts for contextual factors such as t...
متن کامل